Proceedi ngs of the AAAl Spring Synposium 1995.

A Constraint-Based Control Architecture for Acting and Reasoning
in Autonomous Robots

Justinian P. Rosca and Terry Riopka
Computer Science Department
University of Rochester
Rochester NY 14627

rosca@cs.rochester.edu, riopka@cs.rochester.edu

Abstract

In this paper we will address several architectural de-
cisions in defining a software control architecture for
mobile robots. Our system is a collection of con-
trol primitives that enables the development of sim-
ulations or control algorithms for autonomous agents.
Its computational capabilities are determined by an
object-oriented constraint-based architecture. We dis-
cuss how high level knowledge, skills, goal-driven and
reactive behavior are integrated within such an ar-
chitecture. Our goal is to design a framework that
enables the merging of classic and reactive implemen-
tation ideas. We will show, that each such type of
control can be implemented in our system. The issues
of task decomposition and granularity are given spe-
cial attention, as they lie at the basis of our architec-
ture. We discuss two learning methods supported by
our system. The first is based on environment explo-
ration, while the second copes with skill acquisition.
Our robot, cycLops , is a LEGO mini-robot based on
the 6.270 MIT kit to be used in a package delivery
application.

Introduction

Hardware miniaturization offers the opportunity to
bridge the gap between laboratory mobile-robot de-
signs and industrial applications like floor cleaning,
surveillance, flexible part transportation, delivery, or
harvesting [13].

Each of the applications in this extended context
requires increased sensing capabilities and process-
ing power. System architectures are beginning to re-
flect the increase in complexity by integrating multiple
micro-controllers and relying on distributed process-
ing. Consequently, software architectures have to cope
with an increased range of complex problems and need
to answer questions such as how global functionality
can be achieved, how knowledge and skills are acquired
and robots are programmed and tested, how robots can
learn to improve their task performance, how perfor-
mance degrades in case of module failures and how
the system copes with uncertainty and imprecision, to
name just a few.

The two prevalent architectural ideas are the classic

or centralized approach and the reactive approach ([1],
[2]). They differ in the way each views the role played
by a world model. The centralized or knowledge-based
approach emphasizes a (generally declarative) model of
the world by representing detailed expertise from the
problem domain [11]. It integrates sensing, reason-
ing or problem-solving and acting modules [15] that
operate on the domain knowledge. The reactive or
behavior-based approach recognizes the importance of
the principles of connectedness and embodiment (the
robots experience the world directly). Consequently,
the system must get beyond symbolic reasoning to con-
sider special purpose reflexes that enable the robot to
act at high speeds in certain circumstances, to be “sit-
uated” in its environment. No central world model
is used in this latter approach, as the world can be
directly sensed depending on the agent’s goal and sit-
uation.

In this paper we will address several architectural
decisions for building artificial agents by taking a hy-
brid approach. We aim at embodying these principles
in a collection of primitives that will enable an easier
prototyping of applications. We present the main fea-
tures of our collection of primitives called the software
architecture control kit (ACK). We discuss two learn-
ing methods we are interested in. The first is based on
environment exploration, while the second copes with
skill acquisition. Finally we present our robot, a LEGO
mini-robot based on the 6.270 MIT kit and a delivery
application which is currently under development.

Design Decisions

The computational capabilities of our system will be
determined by an object-oriented architecture. We dis-
cuss how high level knowledge, skills, goal-driven and
reactive behavior can be integrated in a constraint-
based architecture.

The major design goals we want to address are:

e facilitate a distributed and modular software orga-
nization

e enable the implementation of both goal-driven ac-
tivities and reactive behaviors.

e sense time and take into account time constraints,
both for guiding the system actions and for improv-
ing its behavior.

e enable active learning by deciding what to be ex-
plored and by adapting the robot to the environment
in which it operates

e enable evolution towards more complex or more re-
fined patterns of operation

Although our test robot hardware does not allow the
connection of additional extensions based on micro-
controllers, we consider that the software architecture
should aim at a multi-controller network as in [13].
Moreover it should make such an architecture trans-
parent to the programmer. A modular architecture
organizes the knowledge, competences and activity of
the system such that local changes, improvements or
tuning do not affect the functioning of unchanged com-
ponents. It offers a higher level of abstraction that can
be coped with in an easier way.

Goal-driven behavior is an important characteris-
tic of an intelligent system. It influences the types of
control mechanisms and knowledge representation we
adopt. Goal-directed activities ensure global system
functionality. Traditionally, symbolic reasoning tech-
niques have been successfully applied for implementing
goal-driven planning and problem solving. Real-world
situations do not always allow spending time for sym-
bolic inference. Reactive behaviors representing inde-
pendent competence modules can both sense the world
and control the system actuators in order to respond
fast to the current world situation. However, such an
approach does not scale well. As the number of mod-
ules implementing behaviors gets larger, their possible
interactions become significant and it becomes harder
to ensure that modules do not work at conflicting goals.
Integrating higher level reasoning processes and reac-
tive behaviors may inherit the advantages of both ap-
proaches while solving some of the problems each sep-
arate approach has.

The situatedness property implies that the control
system is able to react in a timely fashion to various
stimuli. Time allows the formulation of simple plans,
meta-reasoning or simple reinforcement of various ac-
tions taken during goal pursuance. Time represents an
essential element in the integration of reactive behav-
iors with high-level reasoning and learning.

The Architecture Control Kit

The level of parallelism and modularity of a distributed
system depends on conceptual factors such as: pro-
gram granularity, parallelism control and process syn-
chronization and communication.

Parallelizable numerical applications are character-
ized by granules loosely coupled from the point of view
of their semantics. A granule is a group of program
units that can be executed in parallel with other such
groups. Robotics and knowledge processing techniques

address applications with much higher run time dy-
namics. The detection of granules is highly dependent
on the environment and on the problem solving context
([8], [9]). For example, behavior selection in an arti-
ficial creature depends on the current situation given
by sensor data, by the creature’s motivations and be-
liefs [10]. The proposed ACK will try to exploit this
dynamic type of context-dependent parallelism that re-
sults from the interaction of problem entities.

Knowledge representation

A symbolic, object-oriented representation of the ap-
plication domain, although not exhaustive, makes it
possible to name and control the chunks of work the
system has to do at a given time.

The knowledge representation paradigm used is in-
spired by the blackboard model [4] and an implementa-
tion of it that outlines the tradeoff between granularity
and parallelism in knowledge processing [3].

The main static representational entities are the 0b-
ject and the knowledge source. Knowledge sources can
be activated to generate knowledge source activation
records (KSAR) which are used to record and control
the dynamics of the system.

Objects are described using a pattern called object
prototype. We explicitly talk about instances of an
object as objects created dynamically, according to a
given prototype. An object prototype consists of de-
scriptions of object attributes, knowledge sources at-
tached to the object and connections to other objects
attached to object attributes. Attributes have sym-
bolic names and carry a simple or a structured value.
Values are implemented by means of simple C types.

Knowledge sources are the second important type
of system entity. They specify the way in which ob-
jects are processed. Any fragment of code, no matter
how simple or complicated, can be encapsulated in a
knowledge source.

An object’s connections to other objects are inter-
preted as object relations between the object and other
system objects. Relations are themselves implemented
by system objects, carrying knowledge sources that
may specify constraints between objects, how objects
influence one another, hierarchical relations between
objects, etc.

The system may represent each input sensor data
that is individually addressable as an object whose at-
tributes are shared (can be read or written) by all sys-
tem processes. A particularly important attribute is
the sensor reading. Other objects represent system be-
liefs and are part of a fixed symbolic representation of
the problem domain. However, the attributes of such
objects are not necessarily shared by all the system
processes.

Knowledge sources attached to object relations may
be designed to work similarly to rules in a rule-based
system, namely they are defined in terms of two con-
dition parts, called activation and execution shields in

[3] and a body.

WHEN < activation_shield(KS) >
IF < execution_shield(KS) >

THEN < body(KS) >

The activation shield tests the opportunity or suit-
ability to execute the main part of the knowledge
source, the KS body. The execution shield tests the
appropriateness to execute the KS body.

These knowledge source components are called frag-
ments. As opposed to a rule-based implementation,
KS fragments are implemented as code in the basic
implementation language (C in our case). We repre-
sent skills as knowledge source fragments.

The main automatic processing mechanism of the
system is knowledge source activation. Whenever the
value of the attribute of an object changes, all knowl-
edge sources of the object relations attached to the
attribute are activated. We will justify how such a
simple processing mechanism can generate useful con-
trol behavior.

Control architecture

Knowledge processing in such a system is opportunis-
tic ([4]). When knowledge sources attached to objects
are activated they create high level, virtual inference
processes represented in ACK by knowledge source ac-
tivation records (KSAR). Executions of KSARs result
in computation of new values for the attributes of other
objects, activating other knowledge sources and hence-
forth generating new high level inference processes.
Granules of computation are naturally represented by
KSARs. If two different KSARs access different ob-
jects, to read or write values of attributes for different
objects, they are independent and can be executed in
parallel. If they access the same object they are seri-
alized in accessing the object. The two KSARs will be
executed in a fixed order, according to their priority.

By enabling the description of granule computations,
the system makes it possible to parallelize the appli-
cation. Moreover the way this is done is most general,
and can be equally applied to any application built on
top of system.

A typical robotics application may have lots of high
level processes which correspond to knowledge source
fragments activated to solve a problem by coordinat-
ing their behavior or working opportunistically either
against one another or cooperating to solve the prob-
lem. Ideally, inference processes should be independent
of one another, so that they can be conceptually run
on a parallel virtual machine. ACK provides to the
user a model of parallelism at this high level [14].

In the following sections we present two simple ex-
amples showing how reactive operation as well as goal-
driven operation can be modeled using the system.

Reactive operation We show that one can imple-
ment a subsumption architecture in our system by giv-
ing a simple example involving a definition of two be-
haviors and an implementation of a suppressor (or in-
hibitor) node.

Consider two behaviors, LINE-FOLLOW and AVOID-
OBSTACLE that represent two different control layers
that run in parallel whenever the appropriate sensors
fire. The two behaviors may be related by a suppres-
sor node in a subsumption-like architecture [6]. For
example, the second behavior subsumes the function
of the first in order to generate the effect of a higher
level competence.

An example of a prototype and two knowledge
sources that implement the line following behavior in
ACK is presented in figure 1. We define two object
prototypes line-follow-proto having three attributes.
The first two are real-valued attributes: error, rep-
resenting an estimation of how much the vehicle by-
passed the line to the left or to the right, and steering-
command, representing the computed steering angle.
The third attribute, line-alarm, is a boolean-valued at-
tribute that is flipped whenever the line detection sen-
sors detect that the vehicle straddles a line. The knowl-
edge source line-follow-ks is attached to the line-alarm
attribute, while steer-ks is attached to the steering-
command attribute. This implies that whenever the
sensor values indirectly trigger (by means of other KSs)
the values of the alarm, a KSAR with the goal of com-
peting for a motor command that corresponds to line
following is created. Similarly, when steering-command
is set, a steering-ksar is created. The line-follow-ks
knowledge source has three fragments:

1. line-follow-goal-p tests if this behavior is appropri-
ate. If we want to execute line following whenever
a line is found, then this predicate returns a true
value always, otherwise a more complex test can be
implemented.

2. line-positioning-error-p tests if there exists a posi-

tioning error with respect to the line followed. If
the answer is true, this predicate has a side effect.
It modifies the value of the error attribute of the
line-follow-obj object.

3. line-follow-action implements a steering propor-

tional to the error computed, in case such an error
appeared; it sets the value of the steering-command
(steering angle) attribute, in order to trigger the ac-
tivation of a steer-ksar which will eventually compete
with similar KSARs created by other processes.

Suppose that both LINE-FOLLOW-KS and AVOID-KS
have generated steering KSARs which will compete for
an actuator command. They correspond to different
steering instances, so each will refer to a different steer-
ing angle and will have a different priority. The one
with the highest priority will be selected for execution
first. The steer KS fragment will include a command
to kill all other existing steering KSARs, if any, after

Object Prototypes and Knowledge Sources

[LINE-FOLLOW-PROTO]

AVOID-PROTO

LINE-FOLLOW-KS STEER-KS AVOID-KS A
’ , e AN ~ \\

’/ ’ - <. RN . ‘\
! . g S RN \
! v z S N |
| LINE-FOLLOW-KSAR STEERING-KSAR STEERING-KSAR AVOID-KSAR i
\ Phase: Priority = 80 Priority = 100 Phase: |
N Priority: 80 Priority: 100 J
\)

— L lteEs . P ‘_’_/ - =

: LINE-FOLLOW-OBJ ' ' AVOID-OBJ :

, steering-command:20 | : steering-command:45 |

N o e e e e e - - 7 N o e e — — — — — — — - 7/

Instances and KSARs

Figure 2: Representation and activation of simple reactive behaviors for line following and object avoidance. The Avom

behavior subsumes the LINE-FOLLOW behavior.

LINE-FOLLOW-PROTO

eror

steering-commeand
line-alarm

LINE-FOLLOW-KS STEERKS
line-follow-god-p
line-positioning-error-p -
line-follow-action Seer-action

Figure 1: ACK implementation of the line following be-
havior

steering the vehicle (see figure 2).

Goal-driven activity In the example given above,
line-following KSARs are created whenever the left or
right reflectance sensors detect a value exceeding a
given threshold. Basically, three types of object proto-
types were defined, corresponding to sensors, behaviors
and actuators. One could similarly define prototypes
corresponding to a possible system goal. One of its
attributes plays the role of an alarm attribute. When-
ever its value is changed by a KSAR or by the main
program that starts the ACK scheduler, a process that
will work for fulfilling the goal is created. For example,
suppose that a neighboring beacon emits an infrared
signal on a given frequency. Whenever a signal is de-
tected, the KSAR which continuously monitors such
IR signals will modify an alarm attribute. This will be
sufficient to trigger the KSARs of a higher level behav-

ior that implement a sequence of actions such as: go
to a loading dock, pick up a delivery object, go to the
destination and drop the object there.

Reasoning

One interesting characteristic of our architecture is
that it can equally implement higher level infer-
ence/reasoning tasks as well as low level tasks such as
purely reactive, data driven actions. One can combine
descriptions of the two types of objects and knowledge
sources to implement complicated control systems.

One difference between the two types of processes is
that the former type may implement time consuming
asynchronous computations, while the latter type usu-
ally needs a small amount of time (a system quantum)
to execute and may be tightly coupled.

Building an application In order to build up an
application, the user has to define the appropriate KB
structure (object prototypes, knowledge source proto-
type, attribute descriptions), the code implementing
the knowledge sources and a main program that will
start the ACK priority-based scheduler.

Learning
Environment exploration

Learning enables a system to adapt to the environ-
ment in which it operates. Adaptive control architec-
tures employ various learning techniques. For example
Reinforcement Learning (RL) has been used for learn-
ing an (optimal) policy function, mapping situations
into actions [16]. If the search process controlled by a
RL system chooses the action prescribed by its current

knowledge, then the system exzploits its current knowl-
edge by acting in order to gain reward. Nonetheless,
the system is not endowed with an optimal policy, so
that occasionally it should explore actions at random,
in order to experiment with more state-action pairs.
In this case the system acts to gain information or ex-
perience, that is explores the search space. The choice
of what to do next exemplifies a well-known problem,
the exploration-exploitation trade-off (see [5]).

Our approach is to use ACK to describe explicit ex-
ploratory behaviors. An example of such a goal is map
building. A better estimation of surrounding object
positions can affect the execution of system knowledge
sources, resulting in improved overall behavior. Map
building is one of the background goals in the delivery
application. Whenever the robot moves it generates
low priority processes for the exploration of neighbor-
ing object positions. When no other higher priority
processes are active, an arbitration process promotes
the execution of the process that attempts to explore
the closest area or the one that is supposed to take the
least amount of time. The exploratory behavior initi-
ates skills such as “turn left” or “turn right” to pre-
cisely examine an area of interest. The exact nature of
the exploratory behavior is determined by a combina-
tion of sensor information (e.g., the current location of
the beacon) and memory (e.g. the expected location of
known objects). The result of the exploration is then
used to update the map.

Our approach is similar in its character but differ-
ent in implementation to [12]. [12] describes a control
architecture for a mobile robot which combines a reac-
tive subsystem with a search-based planner. A stim-
ulus response subsystem acts when it can, consulting
a set of stimulus responses in order to invoke an ac-
tion in response to current sensed inputs. If no rules
apply, a planner is consulted to determine an appropri-
ate action. The results of the planner are then used to
acquire a new stimulus response rule, to be activated
under the same circumstances in the future.

Skill acquisition

The incremental development of the stimulus response
rules mentioned above might be a very difficult task.
For a faster and more efficient development, practical
robotic systems should be aided to incorporate certain
stimulus response rules or “micro-behaviors” by im-
plicit programming through interactive training. This
would represent a form of skill rote-learning or learning
by being taught.

Skills are sequences of low-level commands that can
be automatically applied to generate task-achieving
behaviors. We are developing a method for teaching
the robot “micro-behaviors”. A joystick interface is
used to input the necessary motor behaviors and sen-
sor measurements that are associated with a particular
set of activation sensor inputs. The system is prompted
when to begin recording the micro-behavior and when

to stop. For example, wall following could be taught
instead of programmed by moving the robot in such
a way that it bumps a desired sensor and then move
the robot in response to the sensor output. Just rele-
vant sensor data is stored during interactive training.
Relevance is defined as what is different.

Robot Description

cycLops is a LEGO mobile mini-robot that is capa-
ble of exploring a planar world by combining several
high-level behaviors such as line following, beacon fol-
lowing, horizon scanning, obstacle detection and avoid-
ance, wall following and map construction. CYCLOPS
can be taught a set of skills which can be used in writ-
ing its higher-level behaviors. cycLops has the capa-
bility of building a map of a grid-world. Such a map
can be used as a starting basis in implementing a sim-
ple task planner for optimizing the robot’s task in a
delivery application.

Our robot (see figure 3) has a variety of sensor ca-
pabilities, including infra-red reflectance sensors, mod-
ulated infra-red sensor/beacons, an imaging scanner
consisting of a single photoresistor in a servo-controlled
tube (which we plan to replace with a digital camera on
a single chip in the near future), battery power sensor,
beam-splitter encoders, and numerous tactile sensors
(switches and potentiometers).

Figure 3: cycrLops , the Delivery LEGO Robot

The robot has an 81:1 gear reduced rear wheel drive
and a servo-controlled front two-wheel steering. Three
rechargeable 5 volt batteries power the driving motor
using a separate circuit. Four AA batteries supply
power to the logic, all remaining sensors, and two servo
motors.

A 32 character LCD display, on-board buttons and
a drive/steering joystick provide a primitive interface
to the robot vehicle.

Software implementation

Although our system embodies some of the concepts
above we are limited by a number of factors, among
which the 16K on-board RAM memory and the lim-
ited processing power of the MC68HC11 microproces-
sor board are the most important.

The memory limitation dictates a very simple im-
plementation. We take advantage of the multi-tasking
facilities of Interactive C (IC) interpreter, available
as free-ware from MIT [6]. KSARs are implemented
as processes in IC. The global ACK scheduler is not
needed here because the processes created are run us-
ing a round-robin multitasking strategy. Each process
gets a default maximum number of ticks. The ver-
sion of IC used does not support structures, so that
implementing objects and KSARs becomes awkward.
The testing done with the robot aimed at creating all
the components for implementing a subsumption-like
architecture according to a simplified version of the
framework presented. We expect our approach to fully
work for a system that supports the ANSI compatible
C compiler.

Application

We considered a delivery application. ¢CYCLOPS moves
in a world with markings, obstacles and populated
by other moving objects. Delivery is requested asyn-
chronously and signaled to the robot using an infrared
beacon that emits on a known frequency. Whenever
such a signal is issued, if the robot has no other more
important goal to pursue it heads towards a loading
zone, loads the objects it has to deliver and tries to
find its way towards the destination as fast as possible.
Delivery and loading zones have fixed locations within
a rectangular area. In an extension of the task the
robot could cooperate with other delivery robots for
avoiding collisions or for giving up its turn in travers-
ing dangerous work areas.

Comments and Symposium Question
Answers

Coordination — How should the agent arbi-
trate/coordinate/cooperate its behaviors and actions?
Is there a need for central behavior coordination?

In order to achieve more complex forms of interac-
tion within a complex environment, an agent has to
coordinate its actions. The necessity of coordination
appears whenever conflicting situations appear. The
case when situations and actions are not independent
is actually the interesting case. The form of coordina-
tion depends on the task and on the interaction with
the environment and does not necessarily have to be
centralized.

This question implicitly assumes that the system
has a behavior-based control. Behaviors represent
responses to external stimuli from the environment.
However, the way the agent behaves refers in general
to the higher level appearance of the way the system
responds over an observable period of time, and de-
pends on the complexity of the environment. Behavior
may be an emergent property of the system. In this
case, the actions taken by the system may not have
a clear correspondent in the overall behavior. The
specific coordination or interdependence between ac-
tions is responsible for the overall behavior. Arbitra-
tion/coordination usually designates explicit control
mechanisms for solving the interactions among actions.

The subsumption architecture has a primitive type
of coordination. Coordination is ensured by the fixed
priority ordering on the set of behaviors. The most
important active behavior is the one whose actuator
commands are executed.

A blackboard-based architecture enables process co-

ordination based on the status of blackboard variables.
In this way more complex forms of coordination are
possible. Particular examples of coordination are se-
quentialization and parallelization of behavior activa-
tion.
Interfaces— How can human expertise be easily
brought into an agent’s decisions? Will the agent need
to translate natural language internally before it can
interact with the world? How should an agent capture
mission intentions or integrate various levels of auton-
omy or shared control? Can restricted vocabularies be
learned and shared by agents operating in the same
environment?

Interaction with humans and other agents will play
an increased role in the future development of au-
tonomous agents. The language of any such interac-
tions has to operate on entities common to the knowl-
edge representation formalisms of the two communi-
cating agents.

Natural language is neither necessary nor is it the
most efficient means of communicating with a machine,
although it is the most general one. Depending on the
application task a restricted language could be not only
valuable for run-time interaction between agents but
essential for the completion of the task. The level of
the communication language imposes lower bounds on
the complexity level of the knowledge representation
and reasoning capabilities of the agent. An important
communication problem, inherent in natural language,
is ambiguity. Humans could easily interpret requests
from the agent but they should transmit to the agent
only requests that can be represented unambiguously
in the communication language.

Our application did not address any of these issues
directly since human interaction was not required for
completion of the robot’s task. A restricted vocabu-
lary however, would have been very useful in the hu-
man/robot interaction required during skill learning

and would have significantly accelerated this stage of
program development.

Representation— How much internal representation
of knowledge and skills is needed? How should the
agent organize and represent its internal knowledge
and skills? Is more than one representational formal-
ism needed?

Pragmatics dictates that suitable knowledge repre-
sentation (KR) paradigms depend on the task. How-
ever knowledge complexity and knowledge level enter
the equation of the speed vs. memory tradeoff. This
is particularly important for autonomous agents, char-
acterized by exhaustible power supplies, other physi-
cal limitations and bounded resources. A more com-
plex representation needs more memory and involves
more complex decision making. The consequence is
an increase in the response time, unless the “make the
common case fast” heuristic is used in the design of
the architecture. A simple example of the tradeoff be-
tween the generality of the representation and reason-
ing mechanisms and the overall agent efficiency is of-
fered by our application. For example, map building
is not feasible in a four minute task, but is the way to
go if the robot is supposed to execute the same task
many times, with a small turnaround time.

In moderately complex applications more than one
representation formalism might be needed. Such
an approach might improve system modularity and
scalability. However one needs to convert knowl-
edge, or partial solutions/results between representa-
tion paradigms which have different capabilities and
computational characteristics. The form of the de-
composition is an important question and one which
is usually solved in a domain dependent way.
Structural— How should the computational capabili-
ties of an agent be divided, structured, and intercon-
nected? What is the best decomposition/granularity
of architectural components? What is gained by us-
ing a monolithic architecture versus a multi-level, dis-
tributed, or massively parallel architecture? Are em-
bodied semantics important and how should they be
implemented? How much does each level/component
of an agent architecture have to know about the other
levels/components?

We have suggested that the architecture control kit
(ACK) offers a flexible and efficient way of dividing up,
structuring and interconnecting the computational ca-
pabilities of an agent. Such an approach is oriented to-
wards the opportunistic activation of problem solving
modules, defined to compete or cooperate. Problem
solving power emerges based on the effects of processes
corresponding to knowledge source activation records
[4]. The granularity of decompositions is determined
by the granularity of knowledge sources which is; in
turn, under user control. Knowledge sources are de-
fined as chunks of code written in a base language.
Performance— What types of performance goals and
metrics can realistically be used for agents operating

in dynamic, uncertain, and even actively hostile envi-
ronments? How can an architecture make guarantees
about its performance with respect to the time-critical
aspect of the agent’s physical environment? What are
the performance criteria for deciding what activities
take place in each level/component of the architecture?

It is almost impossible to come up with a gen-

eral quantitative performance measure. Quantitative
task dependent performance measures are important,
but will always measure just certain solution aspects.
Therefore, a good overall evaluation would have to
take into account performance measures over several
different evaluation directions on a multitude of envi-
ronmental situations, ranging from easy to very diffi-
cult ones. Combining different performance measures
is not an easy task either. Real world offers an en-
vironment with unexpected events or with unknown
probability distribution of events, which determines
a stochastic algorithm behavior. Good performance
with high probability on any inputs is required. On
the other side, the evaluation of failures may also be
useful. Contrary to the common belief that we know
what does not work, we miss rigorous analyses of ex-
periments that do not work or in which solutions are
very hard to come by.
Psychology— Why should we build agents that mimic
anthropomorphic functionalities? How far can/should
we draw metaphoric similarities to human/animal psy-
chology? How much should memory organization de-
pend on human/animal psychology?

Metaphoric analogies to human/animal psychology

should offer alternative implementation means and
ideas, and generate insights into the functioning of
both artificial and natural designs.
Simulation— What, if any, role can advanced simula-
tion technology play in developing and verifying mod-
ules and/or systems? Can we have standard virtual
components/test environments that everybody trusts
and can play a role in comparing systems to each other?
How far can development of modules profitably pro-
ceed before they should be grounded in a working sys-
tem? How is the architecture affected by its expected
environment and its actual embodiment?

Simulation, when used, should offer a sufficiently
complex environment. In this case, simulation is im-
portant from several points of view. First it offers the
means to test the system on a huge diversity of in-
puts from a highly dimensional input space. This is
recommended because of the stochastic nature of real
environments. It affects software debugging, as ex-
periments can be replicated, and system development.
Second, simulation offers opportunities for parameter
adaptation and even learning. However, simulation can
never replace real world testing and evaluation. Differ-
ent performance criteria may be generally needed for
simulation and real world testing.

Learning— How can a given architecture support
learning? How can knowledge and skills be moved be-

tween different layers of an agent architecture?

Without adaptation and learning mechanisms artifi-
cial intelligence systems are “inherently biased by the
features and representation schemes defined by the sys-
tem designer” [7].

I view adaptation as an automatic adjustment of
control parameters to environmental conditions in or-
der to make the agent more fit to the conditions in
which it operates. Learning subsumes the gain or re-
organization of knowledge, understanding and skills as
a result of instruction or self-introspection and modifi-
cation of behavior as a result of the experience in the
interaction with the environment. Learning can itself
be subject to evolution.

The learning problem is very hard in general. Com-
putational learning approaches rely heavily on the rep-
resentation formalism used. In simplified approaches
learning takes the form of an optimization of param-
eters or generalization problem. We have attempted
preliminary work on the influence of two types of learn-
ing mechanisms. The first is based on the idea of envi-
ronment exploration. The agent takes advantage of its
current path in the world in order to update a proba-
bilistic grid-world model of the world. It has provisions
for exploitative goals in case no other direct goals ex-
ist. A second type of learning, skill acquisition, is used
mostly as a development aid to generating more com-
plex behaviors.

Acknowledgments

The robot presented was built for a Mobile Robots
seminar at the University of Rochester by the authors
after an initial design by Randal Nelson and the au-
thors. We want to thank Chris Brown, the mentor
and organizer of the seminar, for the continuous en-
couragement he has given during this seminar and for
the challenging competition organized. The competi-
tion rules have suggested to us their refinement into
the current application.

References

[1] Rodney A. Brooks. A robust layered control system
for a mobile robot. IEFE Journal of Robotics and
Automation, 2(1), March 1986.

[2] Rodney A. Brooks. Intelligence without reason. Tech-
nical Report A.I. Memo No. 1293, MIT, April 1991.

[3] Cristian Giumale. A rule-inference package for ai pro-
gramming. In Proceedings of the 7-th International
Workshop on Faxpert Systems and their Applications,
Avignon, 1987.

[4] Barbara Hayes-Roth. A blackboard architecture for
control. Artificial Intelligence, 26(3), 1985.

[5] John H. Holland. Adaptation in Natural and Artificial
Systems, An Introductory Analysis with Applications
to Biology, Control and Artificial Intelligence. MIT
Press, second edition, 1992.

[6] Joseph L. Jones and Anita M. Flynn. Mobile Robots,
Inspiration to Implementation. A K Peters, Wellesley,
Massachusetts, 1993.

[7] Hiroaki Kitano. Challanges of massive parallelism. In
Proceedings of the International Joint Conference on
Artificial Intelligence, pages 813-834. Morgan Kauf-
man, 1993.

[8] Henry Lieberman. A preview of actl. Technical Report
Al Memo No. 625, MIT Al Laboratory, 1981.

[9] Henry Lieberman. Thinking about lots of things at
once without getting confused: Parallelism in actl.
Technical Report Al Memo No. 626, MIT Al Labora-
tory, 1981.

[10] Pattie Maes. A bottom-up mechanism for behavior
selection in an artificial creature. pages 238-246. 1991.

[11] Pattie Maes. Behavior-based artificial intelligence. In
Proceedings of the Second Conference on Simulated

and Adaptibe Behavior. MIT Press, 1993.

[12] Tom M. Mitchell. Becoming increasingly reactive. In
Proceedings of the AAAI pages 1051-1058, 1990.

[13] Francesco Mondada, Edoardo Franzi, and Paolo Ienne.
Mobile robot miniaturisation: a tool for investigation
in control algorithms. Third International Symposium
on Fzxperimental Robotics, Kyoto, Japan, Oct 28-30,
1993.

[14] Justinian Rosca. Parallel knowledge processing - an
sgi implementation. Technical Report unpublished
report, University of Rochester, Computer Science
Dept., 1993.

[15] Charles E. Thorpe. Mobile robots. In Stuart C.
Shapiro, editor, Encyclopedia of Artificial Intelligence,
volume 2. John Wiley & Sons, Inc., second edition edi-
tion, 1992.

[16] Steve Whitehead and Dana H. Ballard. Learning to
perceive and act by trial and error. Machine Learning,
7(1):45-83, 1991.

