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Abstract. Fitness landscape complexity in the context of evolutionary algorithms 
can be considered to be a relative term due to the complex interaction between 
search strategy, problem difficulty and problem representation. A new paradigm 
for genetic search referred to as the Collective Learning Genetic Algorithm 
(CLGA) has been demonstrated for combinatorial optimization problems which 
utilizes genotypic learning to do recombination based on a cooperative exchange 
of knowledge (instead of symbols) between interacting chromosomes. There is 
evidence to suggest that the CLGA is able to modify its recombinative behavior 
based on the consistency of the information in its environment, specifically, the 
observed fitness landscape. By analyzing the structure of the evolving individuals, 
a landscape-complexity metric is extracted a posteriori and then plotted for 
various types of example problems. This paper presents preliminary results that 
show that the CLGA appears to adapt its search strategy to the fitness landscape 
induced by the CLGA itself, and hence relative to the landscape being searched.  

1   Introduction 

It is well known that problem representation can greatly affect the efficiency of 
search and can alter the apparent function complexity with respect to the search strategy 
of the algorithm being used. The application of evolutionary methods often leads to the 
dilemma of matching the particular search heuristics and problem representation used to 
the complexity of the problem being solved. Of great benefit would be a method for 
predicting which algorithm (and its parameters) are best suited to the problem at hand. 
One way to approach this problem is try to measure problem complexity using a metric 
like epistasis variance [Davidor,1991], Walsh sums [Heckendorn et al., 1997], fitness-
distance-correlation (FDC)[Jones & Forrest, 1995] or density of states [Rose et 
al.,1996] and then use the result to classify a given problem for analysis. 

Unfortunately, metrics can be misleading as they rely on statistical sampling of the 
solution space, and except for FDC, completely ignore the question of the search 
algorithm. As [Jones and Forrest, 1995] have shown, the fitness landscape observed for 
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a particular function is an artifact of the algorithm, or more accurately, of the 
neighborhood induced by the operators the algorithm employs. 

Another way would be to take an adaptive approach, to devise an algorithm that 
modifies its own behavior in the process of solving a given problem. Examples of this 
approach range from the self-adaptive mutation rates used in evolutionary 
strategies[Back, 1997] to the evolving representations pioneered by [Goldberg, et al., 
1989]. A comprehensive list of such methods is too extensive to be discussed here, but 
may be found in a recent survey [Hinterding, et al., 1997]. In the case of self-
adaptation, operators are often adjusted based on an analysis of the progress of the 
algorithm. A frequent criticism is the lag in the time between operator adjustment and 
algorithm response. In the case of evolving representations, the intent is to discover 
and analyze variable interactions in order to efficiently deal with them. However, 
assumptions regarding problem complexity are required to make these methods work. 

The Collective Learning Genetic Algorithm (CLGA) [Riopka and Bock, 
2000][Riopka, 2002] is an example of the latter approach, but is shown here to also use 
a type of implicit problem-difficulty metric by virtue of the mechanism used to do 
recombination. The metric does not ignore the question of the search algorithm 
because it is part of it. In this paper, a landscape complexity metric is extracted a 
posteriori by analyzing the structure of the evolving individuals and then plotted for 
various types of example problems. Preliminary results show that the CLGA appears to 
respond to problem difficulty naturally, as a consequence of its operation. The CLGA 
search strategy is reflected in the empirically derived landscape complexity metric, and 
is shown to adapt to the problem at hand. Adaptation occurs without any explicit 
operator control and without any assumptions regarding problem complexity.  
The paper is organized as follows. Section 2 reviews the main features of the CLGA to 
provide the necessary background for understanding the landscape complexity metric. 
Section 3 discusses how the landscape complexity metric is extracted from the CLGA. 
Section 4 presents and discusses the results, and the paper is summarized and 
concluded in Section 5. 

2   CLGA Description 

A complete description of the CLGA is given in the sources cited previously. The 
following section briefly reviews the main features of the algorithm.  

A CLGA consists of a population of adaptive learning agents called 
SmartChromosomes. Each SmartChromosome consists of two components: an 
instantiation of a collective learning automaton (CLA) and a chromosome string 
representing the best solution the SmartChromosome has found so far. The concept of 
a CLA is derived from collective learning systems theory [Bock, 1993]. The CLGA 
differs from other evolutionary algorithms in one very important way, and that is that 
recombination involves not an exchange of schemata, but an exchange of information 
which is then used by individual chromosomes to guide. Since that information is 
derived  from observations of schemata within the population, recombination is 
necessarily driven by the quality and consistency of that information. 



A CLA consists of a fixed number of feature detectors, each associated with a 
histogram that contains the accumulated knowledge of the fitness of schemata the 
SmartChromosome has “observed”. Each feature detector monitors a unique set of 
chromosome sites. Its corresponding histogram contains one bin for every possible 
permutation of symbols for the chromosome sites, which the feature detector monitors. 
The number of feature detectors in each SmartChromosome (d) and the cardinality of 
the set of monitored sites (k) are both parameters of the algorithm. For example, for 
binary encodings, a feature detector monitoring k chromosome sites will have 2k bins. 
Figure 1 shows a graphical depiction of two SmartChromosomes, taken from a binary 
encoded population with d=4, k=1 and string length N=12. The simplest case of k=1 is 
shown in the example to make it easier to understand the extracted landscape-
complexity metric discussed in the next section. 

Given a feature detector cardinality of k, the total number of possible combinations 
of monitored sites is N chromosome sites taken k at a time NCk. The number of 
SmartChromosomes (M) in the CLGA population is determined by the number of 
feature detectors per SmartChromosome and the combination ratio rc, the fraction of 
combinations actually incorporated into the population. Hence,  

Incorporating all combinations insures problem-representation independence with 
respect to the recombination process. A population is created by randomly selecting the 
required number of combinations (without replacement) from the total and distributing 
feature detectors as randomly as possible among the SmartChromosomes. With large 
populations and small k, the combination ratio is usually much larger than one and 
corresponds to the number of copies of each feature detector in the population. 

Initial chromosome strings are generated randomly. Each generation consists of five 
stages: mating, intelligent recombination, directed mutation, evaluation and individual 
selection, all of which are executed locally by the individual SmartChromosomes.  
Mating. Each SmartChromosome mates with m other SmartChromosomes selected 
randomly from the population. 
Intelligent Recombination. Intelligent recombination comprises two processes: an 
acquisition of knowledge (inspection) and application of that knowledge to direct 
recombination (interrogation). A SmartChromosome inspects the strings of its mates 
by noting in each mate’s string the particular permutation of symbols at the location of 
the sites monitored by the SmartChromosome’s feature detectors. The bin weight 
associated with the observed permutation is replaced by the average of the current string 
fitness and all other string fitnesses that contributed to that bin in the past. A 
SmartChromosome interrogates its mates by superposing the best states of its own 
feature detectors with those of its mates’ feature detectors in order to modify its string. 
To accomplish this, first all best states are sorted in descending order by weight 
magnitude. The corresponding permutations of symbols are superposed sequentially 
state by state beginning with the best state with the largest magnitude overwriting the 
relevant chromosome sites in the SmartChromosome’s string. In order for a state to be 
consistent, none of the monitored sites of the corresponding feature detector may  
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Fig. 1. During inspection, the feature detectors of SmartChromosome A "observe" the 
shaded symbols pointed to by arrows. For feature detector f5, this causes the bin 
weight for state [0] to be replaced by the average of the fitness of SmartChromsome 
B's string and all other string fitnesses that contributed to that bin in the past. The same 
is done for bin weight f6[1], f7[1] and f8[0] 

 
overlap with those of any of the previously integrated states or, in case of overlap, the 
symbols in the overlapping sites must be identical. States, which are not consistent, are 
omitted. The fraction of a chromosome's sites affected by the best state superposition is 
referred to as the superposition fraction (sf.).  
Directed Mutation. Standard mutation is not applied in the CLGA, contrary to the 
experiments presented in [Riopka and Bock, 2000]. Many informal experiments have 
since shown that standard mutation is not needed and in fact, actually degrades CLGA 
performance. Consequently, a directed mutation operator is applied as follows. Each 
SmartChromosome maintains a FIFO∗ list of the last h unique chromosome strings it 
has evaluated, where h is some small number (to limit time and memory resources) 
referred to as history length. A SmartChromosome first searches its memory to see if 
the current string has already been evaluated. This will occur only if interrogation 
results in the creation of a string already in memory. If the string has already been 
evaluated, a single bit is randomly selected in the string and complemented. Only those 
bits that have not already been changed are eligible for mutation each time. Once all 
single bits are exhausted, combinations of two bits are complemented. Once those 
combinations are exhausted, combinations of three bits are complemented, etc. The 
need for directed mutation is related to the problem of feature detector convergence, a 
topic currently under research. 
Evaluation. The SmartChromosome evaluates its string using the fitness function.  
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Individual Selection. If a modification results in a string whose fitness is greater than 
the previous string, the new string is retained, otherwise, the SmartChromosome 
reverts to the previous one. In effect, the offspring competes with its parent. The 
SmartChromosome inspects its new string regardless of what its relative fitness is, 
thus learning from both its successes and its failures. 

3   A Landscape Complexity Metric 

Significant evidence exists to strongly suggest that CLGA performance is 
independent of the size of the feature detector (k). For a detailed discussion of this 
result, the reader is referred to [Riopka, 2002]. Consequently, it is conceivable that 
the following analysis for k=1 may be extrapolated to higher values of k with similar 
results. Therefore, all of the experiments presented here use a value of k=1 for which 
the following analysis is valid.  

Chromosome strings are modified during the interrogation process. If we consider 
the mating of two SmartChromosomes with k=1, feature detectors that they have in 
common will tend to compete. This case exists in figure 1 for feature detectors f2 and 
f6 at chromosome site 6. In this example however, the "opinion" of each feature 
detector as to the best bit value for chromosome site 6 differs. SmartChromosome A 
(feature detector f6) has a greater bin weight for bit 1 while SmartChromosome B 
(feature detector f2) has a greater bin weight for bit 0 at that chromosome site. In this 
particular competition, f6 will prevail because its best state f6[1] has a bin weight that 
is greater than the bin weight associated with the best state f2[0]. The bit at 
chromosome site 6 will therefore be set to 1. 

In a typical application, reasonable sized populations using k=1 give rise to a large 
number of copies of each feature detector. Consider a single chromosome site. For a 
given generation, that site will have some number of feature detectors in the 
population with one opinion as to the best bit state for that chromosome site, while 
the remainder will have the opposite opinion. If we take all those with a best bit state 
of 0 and compute the first two moments of the bin weight, and do the same for those 
with a best bit state of 1, we can test the null hypothesis that there is no difference 
between the means (assuming a t-distribution and using a two-tailed test).  

Figure 2 shows the calculation of the t-statistic for an example chromosome of 
length N=12. The t-statistic is used to compute the confidence associated with the 
alternative hypothesis, that there is a difference between the two means. The intuition 
behind this is that a high confidence should indicate how sure the feature detectors 
have become regarding their opinion as to which bit state is correct, regardless of 
which bit state that is. The idea is that out of the feature detectors that agree with one 
another, in a competition they will simply set their bit to the agreed value. However, 
in instances where two feature detectors disagree, a high confidence implies that the 
difference will most likely be quite stark, and hence the decision as to which bit is set 
will be quite firm (either all tending to 0 or all tending to 1). On the other hand, a low 
confidence implies that there is little statistical difference between best states that 
disagree and hence bits will tend to flip between 0 and 1 more often, inducing a 
degree of randomness into the decisions being made. 



Fig. 2. The calculation of the t-statistic used to compute confidence values is 
shown in relation to an example chromosome of length N=12 and the 
corresponding feature detector moments  

 
A single value was computed by averaging the confidence values over all of the 

chromosome sites, arriving at a single metric for the entire population for a given 
generation, referred to as the average bit certainty. In the following experiments, the 
t-score was used to compute confidence values due to the small combination ratio. 

It is well known that as epistasis increases, the fitness landscape becomes more 
and more uncorrelated [De Jong, 1993]. It would therefore be expected that as 
epistasis increases the CLGA would find it more and more difficult to learn consistent 
relationships between bits due to greater variance in solution fitness. Consequently, 
this metric would be expected to be inversely proportional to the level of epistasis. 
Results from several experiments support this hypothesis. 

4   Experiments 

4.1   Fixed Parameters and Performance Metrics 

Several problem generators have been developed to facilitate the design of more 
controlled experiments for testing evolutionary algorithms. Random problems 
generated by NK-Landscape, LSAT and Multi-modal problem generators were used 
in the following experiments. The reader is referred to [DeJong et al., 1997] and 
[Heckendorn et al, 1998] for details.  

The following fixed parameter values for the CLGA were used: m=1, h=4, k=1, 
sf=15%, and a population size of M = 20. NK-Landscape problems of length N=30 
were tested using d=23, while remaining problems of length N=100 were tested using 
d=75, resulting in a combination ratio of approximately rc = 15. Although these 
parameters were not optimized, they were selected based on heuristics derived from 
extensive experiments detailed in [Riopka, 2002]. A relatively small population size 
was used for the following experiments, but very similar results were also obtained 
using larger population sizes as well. Average bit certainty was plotted versus 
function evaluations in all experiments.  
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4.2   NK-Landscape Experiments 

Fifty random, 30-bit NK-Landscape problems using a neighborhood model were used 
in the first set of experiments. The CLGA was run for 50000 evaluations on three levels 
of epistasis, K=5, 10 and 15. Results are shown in figure 3.  

Note that as epistasis increases, the average bit certainty as measured within the 
CLGA population decreases. This is consistent with the interpretation given previously, 
i.e., that the weaker fitness correlations for higher epistasis problems cause the CLGA to 
behave more randomly. It is interesting to note that NK-Landscape problems with lower 
values of K seem to have a greater range of average bit certainty values. This is 
consistent with the intuition that with lower epistasis, there is always some non-zero 
probability of some problems being "hard" simply by accident. 

 

4.3   L-SAT Experiments 

Fifty random, 100-bit 3-SAT problems were used in the next set of experiments. The 
CLGA was run for 30000 evaluations on three levels of epistasis, with the number of 
clauses set to C=430, 1200, and 2400 for low, medium and high epistasis respectively. 
Results are shown in figure 4. To our surprise, there did not seem to be much difference 
between the 3-SAT problems for the three levels of epistasis. This perplexing result 
however, supports observations made by [DeJong, et. al., 1997]. In that paper, the 
experimenters noted that a low mutation rate (less exploration) and low crossover rate 
(lower disruption) actually improved results. The results here suggest that the various 
levels of epistasis for 100-bit 3-SAT problems may contain more structure than 
previously supposed. The CLGA search strategy, as reflected by the average bit 
certainty, suggests the need for a less random search over all three levels of epistasis, 
implying greater problem structure and perhaps explaining why greater preservation of 
structure (less exploration) resulted in improved performance for DeJong et al.  

Note the greater variance in the average bit certainty as epistasis decreases. This is 
consistent with the fact that the 100 variable 3-SAT is known to have a "phase transition" 
at approximately 430 clauses [Crawford and Auton,1996], resulting in problems that 
have an almost equal probability of being satisfiable and unsatisfiable and hence 
computationally most difficult [Gomes and Selman, 2002]. 3-SAT problems with fewer 
clauses are almost always satisfiable while those with more are almost always 
unsatisfiable. The larger variance may reflect the diversity of problems in this critical 
region. Experiments were also run for 3-SAT problems with fewer clauses, but, as 
expected, always obtained the optimum faster than an interpretable bit certainty could be 
extracted. 

A second set of experiments was run using a fixed number of clauses (C = 1200) but 
varying the length of the clauses using values L = 2,3,4 and 5. Again, the CLGA was run 
on fifty random problems for 30000 evaluations. Results are shown in fig. 5.  

In this case, a difference was observed, showing a decrease in bit certainty as the 
length of the clause was increased. This is not surprising if one considers the algorithm 
used to generate the L-SAT problems. As the clause length increases, the probability of 



 
Fig. 3. Average bit certainty plotted for 50 
random 30-bit NK-Landscape problems for 
low, medium, and high epistasis  

 

Fig. 4. Average bit certainty plotted for for 
50 random 100-bit 3-SAT problems for 
low, medium and high epistasis

 

Fig. 5. Average bit certainty plotted for the CLGA for fifty random 100-bit 2-SAT, 3-
SAT, 4-SAT and 5-SAT problems using 1200 clauses 
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satisfying the clause increases (since only a single true value is required to make the 
entire clause true). A more random strategy is therefore reasonable, since the 
likelihood of satisfying clauses is high. On the other hand, with a short clause length, 
a more methodical approach may be more efficient (in the long run). 

4.5   Multi-Modal Experiments 

A final set of experiments was run using 50 random, 100-bit Multi-modal 
problems. The CLGA was run for 30000 evaluations on two levels of epistasis with 
the number of peaks equal to 1 for low epistasis and 500 for high epistasis. Results 
are shown in figure 6. Only 5000 evaluations are shown since all optima were found 
in that time. The results of the last set of experiments were entirely consistent with 
our expectations. The single peak problems resulted in a less random approach due to 
the highly correlated fitness landscape. The higher epistasis problems on the other 
hand, resulted in significantly more random behavior, given the less correlated 
landscape. Optima, however, were found in both cases in approximately the same 
time. 

Fig. 6. Average bit certainty plotted for the CLGA for fifty random 100-bit Multi-
modal problems for low, and high epistasis 

5   Conclusions 
How is the computed average bit uncertainty different in principle from any of the 

metrics cited earlier? It too is based on information ultimately obtained from sampling of 
solutions. However, the difference is that the sampling is done from both successes and 
failures of the particular operator being used (in this case, intelligent recombination). In 
other words, the information accumulated in the feature detector histograms is based on 
not only good schemata (gleaned from inspections of a SmartChromosome's mates), but 
on schemata in the neighborhoods of the fitness landscape directly induced by the 
intelligent recombination. Recall that after modifying its schemata, a SmartChromosome 
inspects the result, whether it is better or worse than its original string. If the fitness 
landscape is an artifact of the search algorithm as Jones and Forest suggest [Jones and 
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Forest, 1995], then the CLGA is responding to the fitness landscape it is navigating 
through. If the landscape indicates that its generated solutions are uncorrelated, the 
CLGA responds by generating trial solutions more randomly. On the other hand, if the 
landscape indicates its generated solutions are correlated, the correlations are 
strengthened and the CLGA responds by generating more correlated responses.  

The empirical landscape complexity metric computed in this paper reflects the strategy 
chosen by the CLGA to solve the given problem. One cannot make an argument that it is 
in any way an objective measure of problem difficulty. However, if problem difficulty 
can be considered a relative term with respect to a search algorithm then taken from that 
perspective the metric is ideal (for the CLGA). The real question is, what kinds of 
problems evoke which type of behavior? More importantly, is the behavior evoked by a 
given problem suitable for solving it (efficiently)? The NFL theorem [Wolpert and 
Macready, 1997] strongly suggests that the answer to this question is no in general, but it 
is interesting to consider what types of problems respond to the CLGA approach and the 
scope of its applicability. Future research will investigate information theoretic 
constraints on the efficacy of the CLGA and hopefully provide more insight into a 
fascinating new mechanism for evolutionary computation. 
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